angle_description=Z\u012bm\u0113t le\u0146\u0137i <b>{A}{S}{B}</b> (iek\u0161\u0113jais v\u0101rds: <b>{THIS}</b>). Tas tiks apz\u012bm\u0113ts k\u0101 <b>{teksta main\u012bgais}</b>.
angle_element_name=Le\u0146\u0137is
angle_short=Defin\u0113ts ar {A},{S} (virsotne) un {B}
arc_auto_name=b
arc_description=Z\u012bm\u0113t loku <b>{THIS}</b> ap punktu <b>{M}</b> ar s\u0101kuma punktu <b>{P}</b>. Punkts <b>{A}</b> defin\u0113 centr\u0101lo le\u0146\u0137i <b>{P}{M}{A}</b>.
arc_element_name=Loks
arc_short=Defin\u0113ts ar {M} (centru), {P} un {A}
arrow_description=Z\u012bm\u0113t vektoru <b>{THIS}</b> ar pamatnes punktu <b>{A}</b> un virsotni <b>{B}</b>
arrow_element_name=Vektors
arrow_short=Defin\u0113ts ar {A} (s\u0101kuma punktu} un {B} (virsotni)
caspoint_description=Z\u012bm\u0113t (x;y)- punktu <b>{THIS}</b> ar koordin\u0101t\u0113m x=<b>{sx}</b> un y=<b>{sy}</b>.
caspoint_element_name=(x;y)-Punkts
caspoint_short=Defin\u0113ts ar x={sx} un y={sy}
circle_auto_name=k
circle_description_a=Z\u012bm\u0113t ri\u0146\u0137i <b>{THIS}</b> ar centru punkt\u0101 <b>{M}</b> un doto r\u0101diusu <b>{L}<b/>
circle_description_b=Z\u012bm\u0113t ri\u0146\u0137i <b>{THIS}</b> ar centru punkt\u0101 <b>{M}</b> un ri\u0146\u0137a r\u0101diusu <b>{C}<b/>
circle_description_c=Z\u012bm\u0113t ri\u0146\u0137i <b>{THIS}</b> ar centru punkt\u0101 <b>{M}</b> un r\u0101diusu <b>{r\u0101diuss}<b/>
circle_description_d=Z\u012bm\u0113t ri\u0146\u0137i <b>{THIS}</b> ar centru punkt\u0101 <b>{M}</b> un punktu <b>{P}</b> uz ri\u0146\u0137a l\u012bnijas
circle_element_name=Ri\u0146\u0137is
circle_short_a=Defin\u0113ts ar {M} (centru) un {L} (r\u0101diusu)
circle_short_b=Defin\u0113ts ar {M} (centru) un r\u0101diusu {C}
circle_short_c=Defin\u0113ts ar {M} (centru) un r\u0101diusu {r\u0101diuss}
circle_short_d=Defin\u0113ts ar {M} (centru) un {P}
composition_auto_name=Konversija
composition_midpoint_description_a=Z\u012bm\u0113t viduspunktu <b>{OutputElement#0}</b> starp punktiem <b>{InputElement#0}</b> un <b>{InputElement#1}</b>.
composition_midpoint_description_b=Z\u012bm\u0113t viduspunktu <b>{OutputElement#0}</b> starp abiem punktiem, kuri defin\u0113 {InputElement#0.elementname} <b>{InputElement#1}</b> .
composition_perpendicular_point_description=Z\u012bm\u0113t pamatnes punktu <b>{OutputElement#0}</b> perpendikulam no punkta <b>{InputElement#0}</b> attiec\u012bb\u0101 pret <b>{InputElement#1}</b>.
composition_circumcircle_center_description=Z\u012bm\u0113t centru <b>{OutputElement#0}</b> ri\u0146\u0137im, defin\u0113tam ar punktiem <b>{InputElement#0}</b>, <b>{InputElement#1}</b> un <b>{InputElement#2}</b>.
composition_mirror_line_description=Atspogu\u013cot punktu <b>{InputElement#0}</b> par <b>{InputElement#1}</b>. Refleksijas punkts tiks apz\u012bm\u0113ts k\u0101 <b>{OutputElement#0}</b>.
composition_mirror_point_description=Atspogu\u013cot punktu <b>{InputElement#1}</b> par <b>{InputElement#0}</b>. Refleksijas punkts tiks apz\u012bm\u0113ts k\u0101 <b>{OutputElement#0}</b>.
composition_parallelogram_point_description=Z\u012bm\u0113t punktu <b>{OutputElement#0}, t\u0101, lai punkti <b>{InputElement#0}{InputElement#1}{OutputElement#0}{InputElement#2}</b> veido paralelogrammu. <b>{InputElement#0}{InputElement#2}</b> ir paral\u0113ls ar <b>{InputElement#1}{OutputElement#0}</b>.
composition_perpendicular_description=Z\u012bm\u0113t perpendikul\u0101ru nogriezni <b>{OutputElement#1}</b> no punkta <b>{InputElement#0}</b> attiec\u012bb\u0101 pret <b>{InputElement#1}</b>. Perpendikula s\u0101kumpunkts tiks apz\u012bm\u0113ts ar <b>{OutputElement#0}</b>.
composition_normal_description=Z\u012bm\u0113t taisni <b>{OutputElement#0}</b> caur punktu <b>{InputElement#0}</b>, kas ir perpendikul\u0101ra attiec\u012bb\u0101 pret <b>{InputElement#1}</b>.
composition_parallel_description=Caur punktu <b>{InputElement#0}</b> z\u012bm\u0113t paral\u0113li <b>{OutputElement#0}</b> attiec\u012bb\u0101 pret <b>{InputElement#1}</b>
composition_circumcircle_description=Z\u012bm\u0113t ri\u0146\u0137i <b>{OutputElement#1}</b> caur tr\u012bs punktiem <b>{InputElement#0}</b>, <b>{InputElement#1}</b> un <b>{InputElement#2}</b>. T\u0101 centrs tiks apz\u012bm\u0113ts k\u0101 <b>{OutputElement#0}</b>
composition_arrow_parallel_description=Z\u012bm\u0113t koline\u0101ru vektoru <b>{OutputElement#0}</b> attiec\u012bb\u0101 pret <b>{InputElement#1}</b>. Koline\u0101r\u0101 vektora s\u0101kumpunkts ir <b>{InputElement#0}</b> un virsotne tiks apz\u012bm\u0113ta k\u0101 <b>{OutputElement#1}</b>.
composition_sector_description=Z\u012bm\u0113t sektoru ar loku <b>{OutputElement#0}</b> ap centru <b>{InputElement#0}</b> un le\u0146\u0137i <b>{InputElement#1}{InputElement#0}{InputElement#2}</b>. Loks beidzas punkt\u0101 <b>{OutputElement#1}</b>, abas le\u0146\u0137a malas tiks apz\u012bm\u0113tas k\u0101 <b>{OutputElement#2}</b> un <b>{OutputElement#3}</b>.
composition_description=No vair\u0101k\u0101m komponent\u0113m veidots objekts
composition_element_name=No vair\u0101k\u0101m komponent\u0113m veidots objekts
composition_midpoint_short_a=Viduspunkts, defin\u0113ts ar {InputElement#0} un {InputElement#1}
composition_midpoint_short_b=Viduspunkts, defin\u0113ts ar {InputElement#0}
composition_perpendicular_point_short=Perpendikul\u0101ra nogrie\u017e\u0146a s\u0101kumpunkts, defin\u0113ts ar {InputElement#0} un {InputElement#1}
composition_circumcircle_center_short=Ri\u0146\u0137a l\u012bnijas centrs, defin\u0113ts ar {InputElement#0}, {InputElement#1} un {InputElement#2}.
composition_mirror_line_short=Simetrisks punkts, defin\u0113ts ar {InputElement#1} (simetrijas ass) un {InputElement#0}
composition_mirror_point_short=Simetrisks punkts, defin\u0113ts ar {InputElement#0} (centrs) un {InputElement#1}
composition_parallelogram_point_short=Paralelogramma punkts, defin\u0113ts ar {InputElement#0}, {InputElement#1} un {InputElement#2}
composition_bisector_short=Bisektrise, defin\u0113ta ar {InputElement#0}, {InputElement#1} (virsotne) un {InputElement#2}
composition_perpendicular_short=Vertik\u0101la taisne, defin\u0113ta ar {InputElement#0} un {InputElement#1}
composition_normal_short=Perpendikul\u0101ra taisne, defin\u0113ta ar {InputElement#0} un {InputElement#1}
composition_parallel_short=Paral\u0113la taisne, defin\u0113ta ar {InputElement#0} un {InputElement#1}
composition_circumcircle_short=Ri\u0146\u0137a l\u012bnija, defin\u0113ta ar {InputElement#0}, {InputElement#1} un {InputElement#2}
composition_arrow_parallel_short=Koline\u0101rs vektors, defin\u0113ts ar {InputElement#0} (s\u0101kumpunkts) un {InputElement#1}
composition_sector_short=Ri\u0146\u0137a sektors, defin\u0113ts ar {InputElement#0} (centrs), {InputElement#1}un {InputElement+D153#2}
composition_short=No vair\u0101k\u0101m komponent\u0113m veidots objekts
graph_auto_name=G
graph_description=Z\u012bm\u0113t funkcijas y=<b>{sy}</b> grafiku <b>{THIS}</b>
graph_element_name=Funkcijas grafiks
graph_short=y={sy}
graphslider_description=Punkts <b>{THIS}</b> ir sl\u012bdo\u0161ais punkts, saist\u012bts pie grafika <b>{E}</b>
graphslider_element_name=Sl\u012bdnis
graphslider_short=Atrodas uz grafika {E}
group_description=Apvienot sekojo\u0161us punktus par grupu <b>{THIS}</b>:
group_description_and=un
group_element_set_name=grupa
group_element_name=grupa
group_short=Apvienot
intersection_description_a=\u0160\u0137elt <b>{E}</b> ar <b>{F}</b>. \u0160\u0137\u0113luma punkts tiks apz\u012bm\u0113ts ar <b>{A}</b>
intersection_description_b=\u0160\u0137elt <b>{E}</b> ar <b>{F}</b>. \u0160\u0137\u0113luma punkti tiks apz\u012bm\u0113ti ar <b>{A}</b> un <b>{B}</b>
intersection_description_c=\u0160\u0137elt <b>{E}</b> ar <b>{F}</b>. \u0160\u0137\u0113luma punkti tiks apz\u012bm\u0113ti ar <b>{A}</b> un <b>{B}</b>
intersection_description_d=\u0160\u0137\u0113lums
intersection_element_name=\u0160\u0137\u0113lums
intersection_short={E} un {F} \u0161\u0137\u0113lums.
line_description_a=Z\u012bm\u0113t taisni <b>{THIS}</b> caur punktiem <b>{A}</b> un <b>{B}</b>.
line_description_b=Z\u012bm\u0113t staru <b>{THIS}</b> no punkta s\u0101kumpunkta <b>{B}</b> caur punktu <b>{A}</b>.
line_description_c=Z\u012bm\u0113t staru <b>{THIS}</b> no punkta s\u0101kumpunkta <b>{A}</b> caur punktu <b>{B}</b>.
line_description_d=Savieno punktus <b>{A}</b> un <b>{B}</b> ar nogriezni <b>{THIS}</b>.
line_element_name_line=Taisne
line_element_name_segment=Nogrieznis
line_element_name_ray=Stars
line_element_name=L\u012bnija
line_short_a=Defin\u0113ts ar {A} un {B}.
line_short_b=Defin\u0113ts ar {B} (s\u0101kumpunkts) un {A}.
line_short_c=Defin\u0113ts ar {A} (s\u0101kumpunkts) un {B}.
line_short_d=Savieno {A} un {B}.
parametercurve_auto_name=P
parametercurve_description=Z\u012bm\u0113t l\u012bkni <b>{THIS}</b> ar x=<b>{sx}</b> un y=<b>{sy}</b>. Parametrs <b>t</b> atrodas robe\u017e\u0101s no <b>{min}</b> l\u012bdz <b>{max}</b>.
parametercurve_short=x={sx} un y={sy} ar parametru t no {min} l\u012bdz {max}
point_description=Z\u012bm\u0113t punktu <b>{THIS}</b> ar x v\u0113rt\u012bbu <b>{x}</b> un y v\u0113rt\u012bbu <b>{y}</b>.
point_element_name=Punkts
point_short=Br\u012bvais punkts.
polygon_auto_name=P
polygon_description=Z\u012bm\u0113t {polygon} <b>{punktuelementi}</b>. Tas tiks apz\u012bm\u0113ts ar <b>{THIS}</b> un to ierobe\u017eos sekojo\u0161i nogrie\u017e\u0146i:
polygon_element_name_0=\u2014
polygon_element_name_1=\u2014
polygon_element_name_2=\u2014
polygon_element_name_3=Tr\u012bsst\u016bris
polygon_element_name_4=\u010cetrst\u016bris
polygon_element_name_5=Piecst\u016bris
polygon_element_name_6=Se\u0161st\u016bris
polygon_element_name_7=Septi\u0146st\u016bris
polygon_element_name_8=Asto\u0146st\u016bris
polygon_element_name_9=Devi\u0146st\u016bris
polygon_element_name_10=Desmitst\u016bris
polygon_element_name_11=Vienpadsmitst\u016bris
polygon_element_name_12=Divpadsmitst\u016bris
polygon_element_name=Daudzst\u016bris
polygon_short={polygon}, defin\u0113ts ar:
slider_description=Punkts <b>{THIS}</b> ir sl\u012bdnis piesaist\u012bts pie <b>{E}</b>
slider_element_name=Sl\u012bdnis
slider_short=Atrodas uz {E}
text_error=K\u013c\u016bda
text_description=Teksts <b>{THIS}</b> ir <b>{Text}</b>
text_element_name=Teksts
tracecurve_auto_name=S
tracecurve_description=Tras\u0113t ar punktu <b>{TracePoint}</b>, p\u0101rvietojot sl\u012bd\u0146a punktu <b>{Slider}</b>.